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Abstract

We study the attenuation, caused by weak damping, of harmonic waves through a discrete, periodic
structure with frequency nominally within the Propagation Zone (i.e., propagation occurs in the absence of
the damping). The period of the structure consists of a linear stiffness and a weak linear/nonlinear damping.
Adapting the transfer matrix method and using harmonic balance for the nonlinear terms, a four-
dimensional linear/nonlinear map governing the dynamics is obtained. We analyze this map by applying the
method of multiple scales upto first order. The resulting slow evolution equations give the amplitude decay
rate in the structure. The approximations are validated by comparing with other analytical solutions for the
linear case and full numerics for the nonlinear case. Good agreement is obtained. The method of analysis
presented here can be extended to more complex structures.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Periodic structures occur often in nature and engineering. Atomic lattices of pure crystals are
examples found in nature. Multistoreyed buildings, elevated guideways for high-speed
transportation vehicles, multispan bridges, bladed disk assemblies in turbines, and stiffened
shells in aircraft and ships provide examples in engineering.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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The problem of wave propagation in periodic structures has received significant attention over
the last four decades (see, e.g., Ref. [1]). The vast majority of papers on this topic have dealt with
linear structures. There exists a large body of work on linear periodic structures. A beginning
reader is referred to Mead’s excellent review [1] and references therein. Significant contributions
may also be found in, e.g., Refs. [2–6] (the list is incomplete, but representative). In this paper, we
study wave propagation in nonlinear periodic structures using harmonic balance and multiple
scales.
The main issues in the linear case can be outlined in the context of the structure sketched in

Fig. 1. Assume zero damping and linear stiffness. If one end of a semi-infinite periodic structure is
excited at a frequency o then, lack of dissipation notwithstanding, a steady wave may fail to
propagate with undiminished amplitude. Bands of frequencies in which waves do propagate with
undiminished amplitude are called propagation zones (PZ). Bands where the amplitude diminishes
are called attenuation zones (AZ). The number of distinct PZs equals the number of degrees of
freedom of one period of the structure [1]. The propagation constant for a wave at a given
frequency is the logarithm of the ratio of complex amplitudes of vibrations of successive elements.
The real part of the propagation constant is called the attenuation constant and the imaginary
part is called the phase constant. Zero attenuation corresponds to PZs while nonzero attenuation
corresponds to AZs. Though propagation constants are most meaningful for linear structures
(damped or undamped), a useful interpretation is possible in the case of propagating waves in
weakly nonlinear but conservative periodic structures [7].
The literature on harmonic wave propagation through weakly nonlinear periodic structures, in

comparison to linear structures, is meagre. A likely reason is that the powerful and popular
matrix-based approaches in the frequency domain used for linear periodic structures run into
trouble in the presence of nonlinearities. Recently, Mallik and Chakraborty have studied
conservative weakly nonlinear periodic structures [7]. They used single-frequency harmonic
balance to describe the nonlinear behavior of a single period of the structure in the frequency
domain, and developed a simple, amplitude-dependent, perturbation expansion of the
propagation constant to elucidate several aspects of wave propagation phenomena in the
presence of weak, conservative nonlinearities. However, they did not address damping (linear or
nonlinear).
In this paper, we consider a weakly nonlinear, damped periodic structure. Using Mallik and

Chakraborty’s idea of harmonic balance in the periodic structures context, we obtain a weakly
nonlinear map (as opposed to simply a transfer matrix) that approximately governs the wave
propagation in such a structure. The propagation zones of the undamped structure now become
zones of weak attenuation. We then use the method of multiple scales (MMS) for maps to study
the weak attenuation in our structure. Note that the MMS for maps is not new [8–10]; its use for
wave propagation in periodic structures is new, however. Our approach can also be used for other
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Fig. 1. A periodic structure.
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small perturbations to linear periodic structures within propagation zones, including conservative
nonlinearities.
2. Weakly damped periodic structures

We will study the cases of linear and nonlinear damping along similar lines.

2.1. Linear damping

Consider the nth element En of a periodic structure consisting, for greatest simplicity, of a mass
m, a linear spring of stiffness k, and a weak damper of coefficient � (see Fig. (2)). We assume
0o�51. Successive elements interact through displacement and force at connecting points, as
indicated. For linear damping, the damping force is �ð _X n � _X nþ1Þ: Applying force and momentum
balance on the nth element, and assuming a harmonic solution, we write

X n ¼ X n;c cosðotÞ þ X n;s sinðotÞ, (1a)

Fn ¼ Fn;c cosðotÞ þ Fn;s sinðotÞ. (1b)

The governing equations can be written in the following matrix form:

X nþ1;c

X nþ1;s

Fnþ1;c

Fnþ1;s

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1�
mo2k

�2o2 þ k2

mo3�

�2o2 þ k2
�

k

�2o2 þ k2

�o

�2o2 þ k2

�
mo3�

�2o2 þ k2
1�

mo2k

�2o2 þ k2
�

�o

�2o2 þ k2
�

k

�2o2 þ k2

mo2 0 1 0

0 mo2 0 1

2
666666664

3
777777775

X n;c

X n;s

Fn;c

Fn;s

8>>>><
>>>>:

9>>>>=
>>>>;
. (2)

The above equation is of the form

qnþ1 ¼ Tqn. (3)

By definition, an eigenvalue s of matrix T and the associated propagation constant m are related
by

s ¼ e�m. (4)
m

Xn+1
Fn+1

Xn
Fn

En En+1

k k

ε εm

Fig. 2. Successive elements of the periodic structure.
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Numerical results showing m versus o will be presented later (see Fig. 4). First, we develop a small
� approximation that will work for the nonlinear case as well.
Eq. (2) can also be written as

X nþ1;c

X nþ1;s

Fnþ1;c

Fnþ1;s

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1�
mo2

k
0 �

1

k
0

0 1�
mo2

k
0 �

1

k

mo2 0 1 0

0 mo2 0 1

2
66666664

3
77777775

X n;c

X n;s

Fn;c

Fn;s

8>>>><
>>>>:

9>>>>=
>>>>;
þ �

o
k

mo2X n;s þ Fn;s

k

�
mo2X n;c þ Fn;c

k
0

0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ Oð�2Þ.

(5)

Neglecting Oð�2Þ terms, Eq. (5) is of the form

qnþ1 ¼ Bqn þ �LðqnÞ. (6)
2.2. Nonlinear damping

We now take the damping force to be �ð _X n � _X nþ1Þ
3 (cubic nonlinearity). Using Eqs. (1), but

now in a one-term harmonic balance approximation, we obtain the governing equations in the
form

qnþ1 ¼ Bqn þ �NðqnÞ, (7)

with B and qn the same as in the linear damping case, and with NðqnÞ given by

NðqnÞ ¼
3

4

o
k

� �3
mo2X n;c þ Fn;c

� �2
þ mo2X n;s þ Fn;s

� �2n o
mo2X n;s þ Fn;s

k

�
mo2X n;c þ Fn;c

k
0

0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (8)

3. Method of multiple scales

A method of multiple scales for two-dimensional maps has been presented in, e.g., Refs. [8–10].
For completeness, we briefly present the method for the system

qnþ1 ¼ Aqn þ �NðqnÞ (9)

with 0o �51 and

qn ¼
qn;1

qn;2

( )
.
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The method, as used here, assumes that A has a pair of strictly complex conjugate eigenvalues of
unit magnitude. Although Eqs. (6) and (7) are four-dimensional maps, the method of analysis is
similar.
For our two-dimensional map, we take

A ¼

1ffiffiffi
2
p

1ffiffiffi
2
p

�
1ffiffiffi
2
p

1ffiffiffi
2
p

2
6664

3
7775 and NðqnÞ ¼ ðq

2
n;1 þ q2

n;2Þ
�qn;1 � qn;2

2 qn;1

( )
. (10)

The eigenvalues s, s̄ of A are

s ¼
1þ iffiffiffi

2
p ; s̄ ¼

1� iffiffiffi
2
p .

The right eigenvectors (u, ū) and left eigenvectors ðn; n̄Þ correspondng to the eigenvalues s, s̄ are

u ¼
u1

u2

( )
¼

1ffiffiffi
2
p

iffiffiffi
2
p

8>>><
>>>:

9>>>=
>>>;
; ū ¼

ū1

ū2

( )
¼

1ffiffiffi
2
p

�
iffiffiffi
2
p

8>>><
>>>:

9>>>=
>>>;
, (11a)

n ¼ x1 x2
� �

¼
1ffiffiffi
2
p

iffiffiffi
2
p

( )
; n̄ ¼ x̄1 x̄2

n o
¼

1ffiffiffi
2
p �

iffiffiffi
2
p

( )
. (11b)

We assume that the solution to Eq. (9) depends upon two independent scales, n (fast) and s ¼ �n
(slow). We assume further that the solution can be expanded as [8]

qn ¼ Qðn; sÞ ¼ Q0ðn; sÞ þ �Q1ðn; sÞ þ Oð�2Þ, ð12Þ

qnþ1 ¼ Qðnþ 1; sþ �Þ ¼ Q0ðnþ 1; sþ �Þ þ �Q1ðnþ 1; sþ �Þ þ Oð�2Þ. ð13Þ

We also assume that the Qs in Eqs. (12) and (13) vary smoothly with s. Then (as in Ref. [10])

qnþ1 ¼ Qðnþ 1; sþ �Þ ¼ Q0ðnþ 1; sÞ þ �½Q1ðnþ 1; sÞ þ qsQ0ðnþ 1; sÞ� þ Oð�2Þ, (14)

where qs denotes a partial derivative with respect to s. Substituting Eqs. (12) and (14) into Eq. (9),
we obtain

Q0ðnþ 1; sÞ þ �½Q1ðnþ 1; sÞ þ qsQ0ðnþ 1; sÞ� ¼ AQ0ðn; sÞ þ �AQ1ðn; sÞ þNðQ0ðn; sÞÞ þ Oð�2Þ.

(15)

At Oð1Þ:

Q0ðnþ 1; sÞ ¼ AQ0ðn; sÞ. (16)

The general solution to Eq. (16), for arbitrary n, is

Q0ðn; sÞ ¼ aðsÞsnuþ āðsÞs̄nū, (17)
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where aðsÞ and āðsÞ are arbitrary, differentiable functions of s. It follows that

qsQ0ðnþ 1; sÞ ¼ qsasnþ1uþ qsās̄nþ1ū. (18)

Using Eq. (17), NðQ0ðn; sÞÞ in Eq. (15) will now be written, for arbitrary n, as

NðQ0ðn; sÞÞ ¼
XM

k¼�M

ckskn (19)

for some finite integer M and appropriate vectors ck, each independent of s and s̄. With Eqs. (18)
and (19), we then get at Oð�Þ:

Q1ðnþ 1; sÞ � AQ1ðn; sÞ ¼ ð�qsasuþ c1Þsn þ ð�qsās̄ūþ c�1Þs̄n þ other powers, (20)

where the ‘other powers’ do not cause resonances and associated secular terms. For the example
considered,

c1 ¼ aðsÞ2āðsÞ
�3ðū1u

2
1 þ ū2u

2
2Þ � 2ðū1 þ ū2Þu1u2 � ðu

2
1ū2 þ u2

2ū1Þ

3u2
1ū1 þ 2u1u2ū2 þ ū1u

2
2

( )
and c�1 ¼ c̄1. (21)

To remove the secular terms (which process lies at the heart of the multiple scales method), the
coefficient vectors of sn and s̄n should be orthogonal to the left eigenvectors of A corresponding
to the eigenvalues s and s̄, respectively; these two conditions may also be looked upon as
solvability conditions that yield the slow evolution sought here. These conditions are

�qsasnuþ nc1 ¼ 0, (22a)

�qsās̄n̄ūþ n̄c�1 ¼ 0. (22b)

From Eqs. (11a), (21) and (22), we obtain

qsa ¼ �ð2þ iÞ
ffiffiffi
2
p

āðsÞa2ðsÞ, (23a)

qsā ¼ �ð2� iÞ
ffiffiffi
2
p

aðsÞā2ðsÞ. (23b)

Approximating

qsa �
aðsþ �Þ � aðsÞ

�
¼

anþ1 � an

�
,

we can convert Eq. (23a) into the map:

anþ1 ¼ an � �ð2þ iÞ
ffiffiffi
2
p

āna2n. (24)

For comparison, the oscillatory first component qn;1 as obtained from direct numerical solution
of the full map with � ¼ 0:03 is plotted in Fig. 3. In this case, the initial condition was randomly
chosen to be

q0 ¼
0:8318

0:5028

� 	
.
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The solution for Eq. (24) was computed with the corresponding initial condition
a0 ¼ 0:1648� 0:6673i. Note that the amplitude of qn;1 is

R ¼
ffiffiffi
2
p
janj. (25)

The match between R and qn;1 is excellent (see Fig. 3).
4. MMS for the linearly damped periodic structure

Consider Eq. (5), written as

qnþ1 ¼ Bqn þ �LðqnÞ (26)

with qn ¼ fX n;c X n;s Fn;c Fn;sg
T, where T denotes transpose. Here B is a 4� 4 matrix having

eigenvalues s and s̄ with multiplicity two each. Taking the parameter values k ¼ 1 and m ¼ 1, we
get

s ¼ 1� 1
2
o2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4o2 þ o4

p
.
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The frequency range considered is 0ooo2, for which the eigenvalues are strictly complex with
unit magnitude. The right eigenvectors are now u, v with

u ¼
o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

o
i� 1

0

2

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (27a)

v ¼
o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2
p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

o
i� 1

0

2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(27b)

and their complex conjugates ū and v̄. Similarly, the left eigenvectors are n;g with

n ¼
o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2
p �

io

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p 0

offiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p þ i0

( )
, (28a)

g ¼
o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2
p 0 �

io

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p 0

offiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p þ i

( )
(28b)

and their complex conjugates n̄, ḡ.
As before, we assume

qn ¼ Qðn; sÞ ¼ Q0ðn; sÞ þ �Q1ðn; sÞ þ Oð�2Þ, ð29Þ

qnþ1 ¼ Qðnþ 1; sþ �Þ ¼ Q0ðnþ 1; sþ �Þ þ �Q1ðnþ 1; sþ �Þ þ Oð�2Þ. ð30Þ

Substituting Eqs. (29) and (30) into Eq. (26) and collecting terms at Oð1Þ gives

Q0ðnþ 1; sÞ ¼ BQ0ðn; sÞ, (31)

the solution to which is

Q0ðn; sÞ ¼ ðaðsÞuþ gðsÞvÞsn þ ðāðsÞūþ ḡðsÞv̄Þs̄n, (32)

where aðsÞ, gðsÞ are arbitrary, differentiable functions of s. Using Eq. (32), LðQ0ðn; sÞÞ can be
written as (see Eq. (19); here M ¼ 1)

LðQ0ðn; sÞÞ ¼ c1sn þ c�1s̄n, (33)

c1 ¼

�o3ðaðsÞu2 þ gðsÞv2Þ � oðaðsÞu4 þ gðsÞv4Þ

o3ðaðsÞu1 þ gðsÞv1Þ þ oðaðsÞu3 þ gðsÞv3Þ

0

0

8>>><
>>>:

9>>>=
>>>;

and c�1 ¼ c̄1, (34)
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where ui’s and vi’s are components of u and v given by Eq. (27). Eliminating the secular terms,

nð�qsasu� qsgsvþ c1Þ ¼ 0, (35a)

gð�qsasu� qsgsvþ c1Þ ¼ 0, (35b)

n̄ð�qsās̄ū� qsḡs̄v̄þ c�1Þ ¼ 0, (35c)

ḡð�qsās̄ū� qsḡs̄v̄þ c�1Þ ¼ 0, (35d)

from which the slow evolution obtained is

qsa ¼
io2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p gðsÞ, (36a)

qsā ¼ �
io2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p ḡðsÞ, (36b)

qsg ¼ �
io2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p aðsÞ, (36c)

qsḡ ¼
io2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p āðsÞ. (36d)

Now let

aðsÞ ¼ aðsÞ þ ibðsÞ (37a)

gðsÞ ¼ cðsÞ þ idðsÞ (37b)

with a, b, c, d real functions of s. Then,

qsa ¼ qsaþ iqsb,

qsg ¼ qscþ iqsd.

Substituting Eqs. (37) into Eqs. (36) for 0ooo2, we obtain

qsa ¼ �
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p dðsÞ, (38a)

qsb ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p cðsÞ, (38b)

qsc ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p bðsÞ, (38c)

qsd ¼ �
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p aðsÞ. (38d)

Eqs. (38) have a four-dimensional phase space. Starting from random initial conditions,
trajectories are observed to go to infinity as s!�1. The growing solution for s!�1
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represents a decaying wave as s!1, and vice versa. We expect two-dimensional invariant
subspaces, one containing solutions growing as s!þ1 (unstable subspace) and the other
containing solutions growing as s!�1 (stable subspace).
The invariant subspaces can be obtained as follows. Putting d ¼ �a and c ¼ b in Eqs. (38), we

obtain

qsa ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p aðsÞ, (39a)

qsb ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p bðsÞ, (39b)

which shows exponential growth as s!þ1. This gives the unstable subspace. Similarly putting
d ¼ a and c ¼ �b, we obtain

qsa ¼ �
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p aðsÞ, (40a)

qsb ¼ �
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p bðsÞ, (40b)

which shows exponential growth as s!�1. This gives the stable subspace.
For any arbitrary solution not necessarily restricted to the invariant subspace, the amplitude is

given by

RðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

n;c þ X 2
n;s

q
¼ 2jaðsÞu1 þ gðsÞv1j. (41)

From Eqs. (27),

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

i� o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2
p ,

v1 ¼ 0.

This gives

RðsÞ ¼ 2ju1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðsÞ þ b2

ðsÞ

q
. (42)

In particular, restricting attention to the stable subspace,

qsR ¼ �
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p RðsÞ, (43)

which gives

R ¼ e
�� o2ffiffiffiffiffiffiffi

4�o2
p n

R0, (44)
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Fig. 4. For the linear structure without damping, the propagation zone (PZ) is 0ooo2. With linear damping

(� ¼ 0:03), the attenuation constants obtained by Eq. (4) and by multiple scales (Eq. (45)) match well.
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for some initial amplitude R0. The attenuation constant is given by

ReðmÞ ¼
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p � for 0ooo2. (45)

The attenuation constant obtained from Eq. (4) is compared with that obtained from the above
equation in Fig. 4. The match is excellent for o not very close to 2.
5. MMS for the nonlinearly damped periodic structure

We now consider the weakly and nonlinearly damped periodic structure given by Eq. (7)

qnþ1 ¼ Bqn þ �NðqnÞ.

Applying the MMS as described above, we obtain the following expressions for the slow
evolution:

qsa ¼ iCðoÞð3g2ḡþ 2aāgþ a2ḡÞ, (46a)

qsā ¼ �iCðoÞð3gḡ2 þ 2aāḡþ ā2gÞ, (46b)
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qsg ¼ �iCðoÞð3a2āþ 2aḡgþ g2āÞ, (46c)

qsḡ ¼ iCðoÞð3aā2 þ 2āḡgþ ḡ2aÞ, (46d)

where CðoÞ, a positive real number for 0ooo2 (see Fig. 5), is given by

CðoÞ ¼ �
3

4
i

o5

ðo4 � 3o2 � 4Þ

ðo4 � 4o2 þ io
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

ð2� o2ÞÞ

ðo2 � io
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

� 2Þ
. (47)

Again putting

aðsÞ ¼ aðsÞ þ ibðsÞ,

gðsÞ ¼ cðsÞ þ idðsÞ

in Eq. (46), we obtain

qsa ¼ �CðoÞ 3d
a2

3
þ b2
þ c2 þ d2


 �
þ 2abc


 �
, (48a)

qsb ¼ CðoÞ 3c a2 þ
b2

3
þ c2 þ d2


 �
þ 2abd


 �
, (48b)
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qsc ¼ CðoÞ 3b a2 þ b2 þ
c2

3
þ d2


 �
þ 2acd


 �
, (48c)

qsd ¼ �CðoÞ 3a a2 þ b2
þ c2 þ

d2

3


 �
þ 2bcd


 �
. (48d)

Eqs. (48) have a four-dimensional phase space. As for the linearly damped case, stable and
unstable invariant manifolds can be easily found for this case as well (details omitted).
6. Numerical simulation

For numerical simulation, as shown in Fig. 6, an N-mass periodic structure with fixed-free end
conditions is used. The first mass is excited sinusoidally. The equations of motion are as follows.
For the first mass,

m €X 1 ¼ kðX 2 � 2X 1Þ þ �ð _X 2 � _X 1Þ
r
þ F sinðotÞ, (49a)

where r ¼ 1 for linear damping and r ¼ 3 for nonlinear (cubic) damping. For n ¼ 2 to N � 1,

m €X n ¼ kðX nþ1 þ X n�1 � 2X nÞ þ � fð _X nþ1 � _X nÞ
r
� ð _X n � _X n�1Þ

r
g. (49b)

For the last mass,

m €X N ¼ kðX N�1 � X NÞ � � ð _X N � _X N�1Þ
r. (49c)

Parameter values used in the simulation are o ¼ 4
5
; � ¼ 0:01; k ¼ 1 and m ¼ 1. We use F ¼ 2 for

N ¼ 1000 and F ¼ 5 for N ¼ 300.

6.1. Linear damping

Eq. (49) can be cast in the following matrix form:

M €Xþ C _Xþ KX ¼ u sinðotÞ, (50)

where X ¼ fX 1 X 2 � � � X Ng
T, u ¼ fF0 � � � 0gT, M;C;K are the mass matrix, the damping matrix

and the stiffness matrix, respectively. After transients die out, the solution X oscillates with the
forcing frequency o. Assuming X ¼ a sinðotÞ þ b cosðotÞ, we solve for a and b in terms of M, C,
Fig. 6. Periodic structure with the fixed-free end conditions and the first mass excited.
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K, u and o. Fig. 7 shows the positions of masses in the steady-state solution at time t ¼ p=2o.
Displacements and velocities of the first two masses in the steady state are

X 1 ¼ 1:3611; X 2 ¼ �0:153; _X 1 ¼ 1:177; _X 2 ¼ 1:591.

Substituting the above in the RHS of Eq. (1a) and at ot ¼ p=2, we get

X 1;c ¼ �1:4712; X 1;s ¼ 1:3611; X 2;c ¼ �1:9887; X 2;s ¼ �0:153.

As seen from Fig. 6, we have

F1 ¼ kðX 2 � X 1Þ þ �ð _X 2 � _X 1Þ. (51)

Using Eqs. (1), we get

F1;c ¼ kðX 2;c � X 1;cÞ þ �oðX 2;s � X 1;sÞ,

F1;s ¼ kðX 2;s � X 1;sÞ þ �oðX 2;c � X 1;cÞ

and substituting numerical values from the above, we get

F1;c ¼ �0:5296; F1;s ¼ �1:5099.

Now we rewrite Eq. (32) for n ¼ 1 in the following manner:

X 1;c

X 1;s

F1;c

F1;s

8>>>><
>>>>:

9>>>>=
>>>>;
¼ ða1 þ ib1Þ

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;
sþ ðc1 þ id1Þ

v1

v2

v3

v4

8>>><
>>>:

9>>>=
>>>;
sþ c.c.,
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where c.c. denotes complex conjugate of the two terms written. Vectors u and v are given by Eqs.
(27). Solving above equation for a1, b1, c1, d1, we get

a1 ¼ 0:601; b1 ¼ 1:1355; c1 ¼ �1:1323; d1 ¼ 0:5981.

For the MMS results, recall Eqs. (38). Writing

qsa �
aðsþ �Þ � aðsÞ

�
¼

anþ1 � an

�
,

qsb �
bðsþ �Þ � bðsÞ

�
¼

bnþ1 � bn

�

and likewise for qsc and qsd, we convert Eqs. (38) into the map

anþ1

bnþ1

cnþ1

dnþ1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

an

bn

cn

dn

8>>><
>>>:

9>>>=
>>>;
� �

o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� o2
p

dn

cn

bn

an

8>>><
>>>:

9>>>=
>>>;
. (52)

We solve Eq. (52) with the above obtained initial condition. The amplitude is given by (see Eq.
(42))

R ¼ 2ju1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ b2n

q
.

The match as seen from Fig. 7 is excellent.
6.2. Nonlinear damping

For the nonlinear structure ðr ¼ 3Þ, a closed-form solution for the steady-state response is not
sought here. Eqs. (49) are first integrated numerically using MATLAB’s ODE solver (ode45) for
some fixed and large number of forcing cycles (here, 5000). This gets rid of initial transients to a
large extent, though not completely. The end conditions obtained are used as an initial guess for
iterative numerical refinement as follows.
Given an initial guess for the steady state, we integrate for one forcing cycle with high numerical

accuracy (in Matlab, the error tolerances were set at 10�13). The difference between the end
condition obtained and the initial guess is to be iteratively taken towards zero. The best-known
iterative technique is the Newton–Raphson method in which, to seek a zero of gðqÞ, we let

qkþ1 ¼ qk � ½Dg��1qk
gðqkÞ,

where ½Dg�qk
is the Jacobian of g evaluated at qk. For arbitrary N-dimensional vector functions of

N-dimensional vectors, the Jacobian can be numerically approximated using finite differences,
and requires N þ 1 function evaluations (expensive for large N). To speed things up, we can
repeatedly use ½Dg�q0 in place of finding ½Dg�qk

each time. The method will still work if the initial
guess is good enough; and though a few more iterations may be needed, the total number of
function evaluations needed can be much smaller if N is large.
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The steady-state solutions obtained using the above method are plotted in Fig. 8 for N ¼ 1000
and in Fig. 9 for N ¼ 300. In Fig. 8, the match is not nearly as good as in the linear damping case;
but it is quite good for Fig. 9. This will be discussed below.
To generate the above numerical comparison, we initially proceed exactly as for the linear case.

Eq. (48), after converting into a map, gives

anþ1

bnþ1

cnþ1

dnþ1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

an

bn

cn

dn

8>>><
>>>:

9>>>=
>>>;
� 4�CðoÞ

3dnð
1
3

a2n þ b2
n þ c2n þ d2

nÞ þ 2anbncn

�3cnða
2
n þ

1
3

b2
n þ c2n þ d2

nÞ þ 2anbndn

3bnða
2
n þ b2n þ

1
3

c2n þ d2
nÞ þ 2ancndn

3anða
2
n þ b2n þ c2n þ

1
3

d2
nÞ þ 2bncndn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. (53)

It remains to iteratively evaluate the map starting from some suitable initial conditions.
We recall that in the MMS, we expand the unknown as

q ¼ Q0 þ �Q1 þ � � � ,

and the MMS then gives the evolution of Q0. The initial conditions for Q0 can differ by Oð�Þ from
those for q. Keeping this in mind, we used a small, ad hoc, optimization procedure to seek initial
conditions for Q0 that tried to simultaneously keep two things small: (1) the difference between
the assumed initial conditions for Q0 and the numerically obtained initial conditions for q (see
discussion of the linearly damped case), and (2) the difference between the computed final state of
Q0 for the last mass, and the numerically obtained corresponding state q (this was not done for
the linearly damped case).
Note that the details of the optimization procedure and the objective function used1 are not

important for the theory. This is because the MMS tries to find a slow evolution equation whose
solutions stay close to the actual solution over n-scales of Oð1=�Þ, but which do not necessarily
match initial conditions.
The initial guesses provided by the above procedure, and used to generate the figures, are

a1 ¼ 1:7690; b1 ¼ 2:7321; c1 ¼ �2:5855; d1 ¼ 1:8218

for N ¼ 300 and

a1 ¼ �1:2164; b1 ¼ 0:3697; c1 ¼ �0:1679; d1 ¼ �1:2442

for N ¼ 1000:
The above results show that for the nonlinear damping case, the MMS does not accurately

predict the attenuation over very large numbers of periods of the structure. This should not,
however, be viewed as a failure of the method. The basic theorems on the MMS guarantee validity
over time scales (or, more appropriately here, n-scales) of Oð1=�Þ. Occasionally, as was observed
for the linearly damped case, good agreement is obtained over much longer time scales. However,
noting that we used � ¼ 0:01, we expect good agreement over a few hundred periods of the
structure but are not surprised if agreement becomes poor over a thousand periods.
1We used a weighted sum of the two difference magnitudes (norms).
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7. Conclusions

We have studied harmonic wave attenuation in periodic structures with weak damping (both
linear and nonlinear). The damping strength was governed by a small parameter �. The problem
was studied using maps which were slightly perturbed versions of simpler maps which had a pair
of pure imaginary eigenvalues. These maps were analyzed using the method of multiple scales
(MMS), which has so far not been used for such problems. Good agreement between the MMS
approximation and full numerics was observed for both cases, when the number of periods of the
structure was Oð1=�Þ. For the linear damping case, agreement was in fact good for even greater
numbers of periods; this is consistent with the fact that the estimate of the attenuation constant,
which can be analytically obtained for the linearly damped case, was also very good.
The method presented here can in principle be extended to more complex structures.
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